Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 147
1.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664444

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Adaptor Proteins, Signal Transducing , Aging , Myocardium , Nerve Tissue Proteins , Ryanodine Receptor Calcium Release Channel , Tumor Suppressor Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male , Aging/metabolism , Mice , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Myocardium/metabolism , Myocardium/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Gene Knockdown Techniques , Endosomes/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Heart/physiopathology , Mice, Inbred C57BL , Humans , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Systole
2.
Front Cell Dev Biol ; 12: 1298007, 2024.
Article En | MEDLINE | ID: mdl-38304423

Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.

3.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38228630

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Ear, Inner , Hair Cells, Auditory, Inner , Animals , Mice , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory/metabolism , Stereocilia/metabolism , Ear, Inner/metabolism , Hearing , Mechanotransduction, Cellular , Mammals/metabolism , Ion Channels/genetics , Ion Channels/metabolism
4.
Am J Cardiol ; 211: 143-152, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37923155

Heart failure with improved ejection fraction (HFimpEF) has better outcomes than HF with reduced EF (HFrEF). However, factors contributing to HFimpEF remain unclear. This study aimed to evaluate clinical and longitudinal characteristics associated with subsequent HFimpEF. This was a single-center retrospective HFrEF cohort study. Data were collected from 2014 to 2022. Patients with HFrEF were identified using International Classification of Diseases codes, echocardiographic data, and natriuretic peptide levels. The main end points were HFimpEF (defined as EF >40% at ≥3 months with ≥10% increase) and mortality. Cox proportional hazards and mixed effects models were used for analyses. The study included 1,307 patients with HFrEF with a median follow-up of 16.3 months (interquartile range 8.0 to 30.6). The median age was 65 years; 68% were male whereas 57% were White. On follow-up, 38.7% (n = 506) developed HFimpEF, whereas 61.3% (n = 801) had persistent HFrEF. A multivariate Cox regression model identified gender, race, co-morbidities, echocardiographic, and natriuretic peptide as significant covariates of HFimpEF (p <0.05). The HFimpEF group had better survival compared with the persistent HFrEF group (p <0.001). Echocardiographic and laboratory trajectories differed between groups. In this HFrEF cohort, 38.7% transitioned to HFimpEF and approximately 50% met the definition within the first 12 months. In a HFimpEF model, gender, co-morbidities, echocardiographic parameters, and natriuretic peptide were associated with subsequent HFimpEF. The model has the potential to identify patients at risk of subsequent persistent or improved HFrEF, thus informing the design and implementation of targeted quality-of-care improvement interventions.


Heart Failure , Humans , Male , Aged , Female , Heart Failure/complications , Cohort Studies , Retrospective Studies , Stroke Volume , Natriuretic Peptide, Brain , Vasodilator Agents , Echocardiography , Prognosis
5.
Cell Rep ; 42(12): 113505, 2023 12 26.
Article En | MEDLINE | ID: mdl-38041810

The composite material-like extracellular matrix (ECM) in the sinoatrial node (SAN) supports the native pacemaking cardiomyocytes (PCMs). To test the roles of SAN ECM in the PCM phenotype and function, we engineered reconstructed-SAN heart tissues (rSANHTs) by recellularizing porcine SAN ECMs with hiPSC-derived PCMs. The hiPSC-PCMs in rSANHTs self-organized into clusters resembling the native SAN and displayed higher expression of pacemaker-specific genes and a faster automaticity compared with PCMs in reconstructed-left ventricular heart tissues (rLVHTs). To test the protective nature of SAN ECMs under strain, rSANHTs and rLVHTs were transplanted onto the murine thoracic diaphragm to undergo constant cyclic strain. All strained-rSANHTs preserved automaticity, whereas 66% of strained-rLVHTs lost their automaticity. In contrast to the strained-rLVHTs, PCMs in strained-rSANHTs maintained high expression of key pacemaker genes (HCN4, TBX3, and TBX18). These findings highlight the promotive and protective roles of the composite SAN ECM and provide valuable insights for pacemaking tissue engineering.


Myocytes, Cardiac , Sinoatrial Node , Mice , Animals , Swine , Myocytes, Cardiac/metabolism , Heart Ventricles , Phenotype
6.
medRxiv ; 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37693424

Background: Heart failure (HF) with improved ejection fraction (HFimpEF) has better outcomes than HF with reduced ejection fraction (HFrEF). However, factors contributing to HFimpEF remain unclear. This study aimed to evaluate clinical and longitudinal characteristics associated with subsequent HFimpEF. Methods: This was a single-center retrospective HFrEF cohort study. Data were collected from 2014 to 2022. Patients with HFrEF were identified using ICD codes, echocardiographic data, and natriuretic peptide levels. The main endpoints were HFimpEF (defined as ejection fraction >40% at ≥3 months with ≥10% increase) and mortality. Cox proportional hazards and mixed effects models were used for analyses. Results: The study included 1307 HFrEF patients with a median follow-up of 16.3 months (IQR 8.0-30.6). The median age was 65 years; 68% were male while 57% were white. On follow-up, 39% (n=506) developed HFimpEF, while 61% (n=801) had persistent HFrEF. A multivariate Cox regression model identified sex, race comorbidities, echocardiographic, and natriuretic peptide as significant covariates of HFimpEF ( p <0.05). The HFimpEF group had better survival compared to the persistent HFrEF group ( p <0.001). Echocardiographic and laboratory trajectories differed between groups. Conclusion: In this HFrEF cohort, 39% transitioned to HFimpEF and approximately 50% met the definition within the first 12 months. In a HFimpEF model, sex, comorbidities, echocardiographic parameters, and natriuretic peptide were associated with subsequent HFimpEF. The model has the potential to identify patients at risk of subsequent persistent or improved HFrEF, thus informing the design and implementation of targeted quality-of-care improvement interventions.

7.
Res Sq ; 2023 Jul 12.
Article En | MEDLINE | ID: mdl-37502846

The inner ear is the hub where hair cells transduce sound, gravity, and head acceleration stimuli carried by neural codes to the brain. Of all the senses, hearing and balance, which rely on mechanosensation, are the fastest sensory signals transmitted to the central nervous system. The mechanoelectrical transducer (MET) channel in hair cells is the entryway for the sound-balance-brain interface, but the channel's composition has eluded biologists due to its complexity. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as central components of the MET complex. The Pz channel subunits are expressed in hair-cell stereocilia, are co-localized and co-assembled, and are essential components of the MET complex in vitro and in situ, including integration with the transmembrane channel (Tmc1/2) protein. Mice expressing non-functional Pz1 and Pz2, but not functional Pz1 at the ROSA26 locus under the control of hair-cell promoters, have impaired auditory and vestibular traits that can only be explained if Pz channel multimers are integral to the MET complex. We affirm that Pz protein subunits constitute MET channels and that functional interactions with components of the MET complex yield current properties resembling hair-cell MET currents. Our results demonstrate Pz is a MET channel component central to interacting with MET complex proteins. Results account for the MET channel pore and complex.

9.
J Physiol ; 601(13): 2547-2592, 2023 07.
Article En | MEDLINE | ID: mdl-36744541

This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.


Cardiovascular Diseases , Endothelial Cells , Humans , Arrhythmias, Cardiac , Myocytes, Cardiac
10.
Cardiovasc Drugs Ther ; 37(1): 25-37, 2023 02.
Article En | MEDLINE | ID: mdl-34499283

PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among one of the most commonly prescribed medications for pain and inflammation. Diclofenac (DIC) is a commonly prescribed NSAID that is known to increase the risk of cardiovascular diseases. However, the mechanisms underlying its cardiotoxic effects remain largely unknown. In this study, we tested the hypothesis that chronic exposure to DIC increases oxidative stress, which ultimately impairs cardiovascular function. METHODS AND RESULTS: Mice were treated with DIC for 4 weeks and subsequently subjected to in vivo and in vitro functional assessments. Chronic DIC exposure resulted in not only systolic but also diastolic dysfunction. DIC treatment, however, did not alter blood pressure or electrocardiographic recordings. Importantly, treatment with DIC significantly increased inflammatory cytokines and chemokines as well as cardiac fibroblast activation and proliferation. There was increased reactive oxygen species (ROS) production in cardiomyocytes from DIC-treated mice, which may contribute to the more depolarized mitochondrial membrane potential and reduced energy production, leading to a significant decrease in sarcoplasmic reticulum (SR) Ca2+ load, Ca2+ transients, and sarcomere shortening. Using unbiased metabolomic analyses, we demonstrated significant alterations in oxylipin profiles towards inflammatory features in chronic DIC treatment. CONCLUSIONS: Together, chronic treatment with DIC resulted in severe cardiotoxicity, which was mediated, in part, by an increase in mitochondrial oxidative stress.


Diclofenac , Heart Diseases , Mice , Animals , Diclofenac/toxicity , Diclofenac/metabolism , Inflammation Mediators/metabolism , Heart Diseases/chemically induced , Heart Diseases/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Cardiotoxicity , Myocytes, Cardiac , Anti-Inflammatory Agents, Non-Steroidal/toxicity
11.
JCI Insight ; 7(22)2022 11 22.
Article En | MEDLINE | ID: mdl-36509290

Sinoatrial node (SAN) cells are the heart's primary pacemaker. Their activity is tightly regulated by ß-adrenergic receptor (ß-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the ß-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during ß-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI-/-) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after ß-AR stimulation between WT and ACI-/- SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during ß-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.


Adenylyl Cyclases , Sinoatrial Node , Animals , Mice , Sinoatrial Node/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Calcium/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Protein Isoforms/metabolism
12.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Article En | MEDLINE | ID: mdl-36269644

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Cardiovascular Diseases , Induced Pluripotent Stem Cells , Animals , Humans , Electrophysiologic Techniques, Cardiac , Arrhythmias, Cardiac/etiology , Myocytes, Cardiac
13.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Article En | MEDLINE | ID: mdl-36044551

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Connectome , Heart Failure , Mitochondria, Heart , Sarcoplasmic Reticulum , Sick Sinus Syndrome , Sinoatrial Node , Animals , Heart Failure/pathology , Heart Failure/physiopathology , Mice , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/pathology , Sick Sinus Syndrome/pathology , Sick Sinus Syndrome/physiopathology , Sinoatrial Node/physiopathology
14.
STAR Protoc ; 3(2): 101301, 2022 06 17.
Article En | MEDLINE | ID: mdl-35463464

Intracellular pH (pHi) plays critical roles in the regulation of cardiac function. Methods and techniques for cardiac pHi measurement have continued to evolve since early 1960s. Fluorescent microscopy is the most recently developed technique with several advantages over other techniques including higher spatial and temporal resolutions, and feasibility for contracting cell measurement. Here, we describe detailed methods for mouse cardiomyocyte isolation, and simultaneous measurement and quantification of pHi and sarcomere length in contracting cardiomyocytes. For complete details on the use and execution of this protocol, please refer to Lyu et al. (2022).


Myocytes, Cardiac , Animals , Hydrogen-Ion Concentration , Mice , Myocytes, Cardiac/physiology
15.
iScience ; 25(1): 103624, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35005560

The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and ß-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.

16.
iScience ; 25(1): 103693, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35036877

Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct ß-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.

17.
Cardiovasc Res ; 118(1): 267-281, 2022 01 07.
Article En | MEDLINE | ID: mdl-33125066

AIMS: One of the hallmarks of myocardial infarction (MI) is excessive inflammation. During an inflammatory insult, damaged endothelial cells shed their glycocalyx, a carbohydrate-rich layer on the cell surface which provides a regulatory interface to immune cell adhesion. Selectin-mediated neutrophilia occurs as a result of endothelial injury and inflammation. We recently designed a novel selectin-targeting glycocalyx mimetic (termed DS-IkL) capable of binding inflamed endothelial cells. This study examines the capacity of DS-IkL to limit neutrophil binding and platelet activation on inflamed endothelial cells, as well as the cardioprotective effects of DS-IkL after acute myocardial infarction. METHODS AND RESULTS: In vitro, DS-IkL diminished neutrophil interactions with both recombinant selectin and inflamed endothelial cells, and limited platelet activation on inflamed endothelial cells. Our data demonstrated that DS-IkL localized to regions of vascular inflammation in vivo after 45 min of left anterior descending coronary artery ligation-induced MI. Further, findings from this study show DS-IkL treatment had short- and long-term cardioprotective effects after ischaemia/reperfusion of the left anterior descending coronary artery. Mice treated with DS-IkL immediately after ischaemia/reperfusion and 24 h later exhibited reduced neutrophil extravasation, macrophage accumulation, fibroblast and endothelial cell proliferation, and fibrosis compared to saline controls. CONCLUSIONS: Our findings suggest that DS-IkL has great therapeutic potential after MI by limiting reperfusion injury induced by the immune response.


Anti-Inflammatory Agents/pharmacology , E-Selectin/metabolism , Endothelial Cells/drug effects , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Neutrophil Activation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Fibrosis , Humans , Male , Mice, Inbred C57BL , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology , Neutrophils/immunology , Neutrophils/metabolism , Platelet Activation/drug effects , Signal Transduction
18.
Heart Rhythm ; 19(2): 281-292, 2022 02.
Article En | MEDLINE | ID: mdl-34634443

BACKGROUND: Long QT syndrome (LQTS) is a hereditary disease that predisposes patients to life-threatening cardiac arrhythmias and sudden cardiac death. Our previous study of the human ether-à-go-go related gene (hERG)-encoded K+ channel (Kv11.1) supports an association between hERG and RING finger protein 207 (RNF207) variants in aggravating the onset and severity of LQTS, specifically T613M hERG (hERGT613M) and RNF207 frameshift (RNF207G603fs) mutations. However, the underlying mechanistic underpinning remains unknown. OBJECTIVE: The purpose of the present study was to test the role of RNF207 in the function of hERG-encoded K+ channel subunits. METHODS: Whole-cell patch-clamp experiments were performed in human embryonic kidney (HEK 293) cells and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) together with immunofluorescent confocal and high resolution microscopy, auto-ubiquitinylation assays, and co-immunoprecipitation experiments to test the functional interactions between hERG and RNF207. RESULTS: Here, we demonstrated that RNF207 serves as an E3 ubiquitin ligase and targets misfolded hERGT613M proteins for degradation. RNF207G603fs exhibits decreased activity and hinders the normal degradation pathway; this increases the levels of hERGT613M subunits and their dominant-negative effect on the wild-type subunits, ultimately resulting in decreased current density. Similar findings are shown for hERGA614V, a known dominant-negative mutant subunit. Finally, the presence of RNF207G603fs with hERGT613M results in significantly prolonged action potential durations and reduced hERG current in human-induced pluripotent stem cell-derived cardiomyocytes. CONCLUSION: Our study establishes RNF207 as an interacting protein serving as a ubiquitin ligase for hERG-encoded K+ channel subunits. Normal function of RNF207 is critical for the quality control of hERG subunits and consequently cardiac repolarization. Moreover, our study provides evidence for protein quality control as a new paradigm in life-threatening cardiac arrhythmias in patients with LQTS.


ERG1 Potassium Channel/genetics , Long QT Syndrome/genetics , Ubiquitin-Protein Ligases/genetics , HEK293 Cells/metabolism , Humans , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques
20.
STAR Protoc ; 2(4): 100891, 2021 12 17.
Article En | MEDLINE | ID: mdl-34704077

Prestin (Slc26a5) is a motor protein previously considered to be expressed exclusively in outer hair cells (OHCs) of the inner ear. However, we recently identified the functional expression of prestin in the heart. Nonlinear capacitance (NLC) measurement in OHCs is used to evaluate the signature function of prestin, which exhibits membrane potential-dependent conformational changes. Here, we describe detailed recording techniques and quantification methods for NLC to evaluate the prestin function in mouse ventricular myocytes. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).


Membrane Potentials/physiology , Myocytes, Cardiac/physiology , Patch-Clamp Techniques/methods , Animals , Cells, Cultured , Electric Capacitance , Mice
...